اثر ساختار مالکیت بر نقدشوندگی سهام: رویکردهای غیرخطی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه حسابداری ،دانشگاه بین المللی امام خمینی (ره)،قزوین،ایران

2 کارشناس ارشد حسابداری ،دانشگاه بین‌المللی امام خمینی(ره)،قزوین،ایران

چکیده

بررسی مبانی نظری و ادبیات پژوهش نشان می‌دهد می‌توان رابطه مثبت و یا منفی معناداری بین ساختار مالکیت و نقدشوندگی سهام پیش‌بینی کرد. بنابراین، هدف پژوهش حاضر، بررسی احتمال وجود رابطه نامتقارن بین مالکیت عمده و نقدشوندگی سهام است. با استفاده از رویکرد الگوی رگرسیون انتقال هموار تابلویی و داده‌های ترکیبی 135 شرکت در بازه زمانی 1387-1396 رابطه نامتقارن بین مالکیت عمده و نقدشوندگی سهام تبیین شد. همچنین، بر اساس مدل‌های شبکه عصبی و رگرسیون لجستیک، میزان خطای پیش‌بینی مورد مقایسه قرار گرفت. نتایج نشان می‌دهد، در رژیم اول (سطح آستانه 34 درصد) رابطه مثبت و معناداری بین مالکیت عمده و نقدشوندگی سهام و در رژیم دوم رابطه منفی و معناداری بین مالکیت عمده و نقدشوندگی سهام وجود دارد. همچنین‌ نتایج پژوهش حاضر بر کمتر بودن خطای مدل‌های پیش‌بینی مبتنی بر شبکه‌های عصبی نسبت به رگرسیون لجستیک تأکید دارد. به نهادهای قانونی توصیه می‌شود قوانین مرتبط با پشتیبانی از سرمایه‌گذاران و البته پیش از آن شفافیت اطلاعات مالی در بازارهای مالی را توسعه دهند.

کلیدواژه‌ها


عنوان مقاله [English]

The impact of ownership structure on stock liquidity: Nonlinear approaches

نویسندگان [English]

  • Abbas Ali Daryaei 1
  • Yasin Fattahi 2
1 Imam Khomeini International University
2 M.A in accounting, Imam Khomeini International University.
چکیده [English]

186
DOI: 10.22099/JAA.2020.32584.1836
 
Journal of Accounting Advances (JAA)
Journal homepage: www.jaa.shirazu.ac.ir/?lang=en
The Impact of Ownership Structure on Stock Liquidity:
Nonlinear approaches

ABSTRACT
Received: 2019-6-29
Accepted: 2020-6-25
  According to the literature, we can predict a positive or negative relationship between ownership structure and stock liquidity. Thus, present study aimed to document the asymmetric relationship between ownership structure and stock liquidity. Using a panel smooth transition regression model, as a new econometric technique, we examined the data (135 firms for 2009-2018) to explore the asymmetric impact of blockholders ownership on liquidity. In addition, the prediction error rate was compared on the base of neural network models and logistic regression. The results show that there is a positive and significant relation between major shareholders and stock liquidity in the first regime (threshold level 34%), while in the second regime, the relationship between them is negative and significant. Also, present study shows that neural networks’ mean-squared error (MSE) is lower than logistic regression.

1- Introduction
       Explanation of ownership structure and its effects on disclosure of information to reduce information asymmetry and subsequent effects on the enhancement of liquidity is of a great importance for investors. Review of numerous studies conducted on the relationship between major shareholders and liquidity implies an asymmetric relationship (Jacoby and Zheng, 2010; Cueto, 2009; Magu, 1998). Given this relationship, researchers focus on two hypotheses: adverse selection hypothesis and efficient monitoring hypothesis. The former says that when major shareholders have more information than other shareholders, information asymmetry arises and as a result, market liquidity is reduced (Kyle, 1985; Easly and O’Hara, 2004). On the contrary, the latter says that an institution rather wants to monitor the managers because of its risk consideration. The logic of this hypothesis is based on this idea that, due to high costs of monitoring, only major shareholders such as institutional ones can achieve sufficient advantages so they would have motives for monitoring. In fact, institutional and major shareholders have opportunities, resources, expertise, and abilities to monitor and influence managers (Cornet et al. 2007). Using the Panel Smooth Transition Regression Model, the current study aims to determine a threshold to investigate non-linear behaviors of major shareholders and stocks liquidity. Then, we will determine whether neural networks’ mean-squared error (MSE) is lower than logistic regression.
 
2- Hypothesis
According to efficient monitoring hypothesis, major shareholders actively manage their investments based on the amount of the invested capital. According to Transaction Cost Theory, an active company management leads to reduced transaction costs and consequently, , reduction of the difference between buy and sell prices of the stocks, subsequently increasing company stocks liquidity. On the contrary, an increase in major ownership indicates information asymmetry, as, with the presence of the major owners, a few informed shareholders can transact based on their information advantages. Concentrated ownership shows motives of a few shareholders to collect and analyze information and ultimately, transact based on it. This imposes adverse selection risk on other shareholders, thereby reducing shareholders’ motives to trade the stocks and lowering liquidity (Rubin, 2007). Our hypotheses is as follows:
        The asymmetric impact of blockholders ownership on firm performance follows the blockholders ownership level. And neural networks’ mean-squared error (MSE) is lower than logistic regression.
 
3- Methods
       We employed a panel smooth transition regression model, recently developed by Gonzalez et al. (2005), to model a nonlinear relationship between Institutional ownership, and firm performance. The simplest case of a PSTR model with two extreme regimes is defined as follows:
 
       The data derives mainly from audited financial statements and board's reports of the TSE, and Reheard Novin software. The population of the study encompasses all TSE firms for the period 2008–2017. However, the study compiles a purposive sampling; thus, financial firms such as banks and insurance firms are absent because they have different conditions in relation to firm characteristics. Listing firms must also have continuous operations during the period of the study, and their information must be available. Following these criteria, the study includes 135 firms (1350 firm-year). Then we will deterimine whether neural networks’ mean-squared error (MSE) is lower than logistic regression.
 
4- Results
Slope parameter, which indicates the speed of transiting from one regime to another, was estimated to be 2242.412, with the major shareholders’ percentage threshold being 34. A threshold is actually a landmark that makes the two mentioned regimes distinct in the panel smooth transition regression model. Depending on the estimated value of the slope parameter and the changeable transition values (percentages of major shareholders), the estimated model coefficients changed from one regime to  another. It should be noted that the first and second regimes were thresholds of the panel smooth transition regression model. In fact, given the observed transition variable, values of regression coefficients changed between the two thresholds. Also, present study shows that neural networks’ mean-squared error (MSE) is lower than logistic regression.
 
5- Conclusion
       Ownership percentages of the major shareholders had positive effects on liquidity in regime 1 and negative effects on performance in regime 2, such that a certain increase in the ownership percentages of major shareholders increases company liquidity and then, an increase in ownership percentages of major shareholders reduces company liquidity. Results of regime 2 were in line with Mendelson and Tunca (2004), Jacoby and Zheng (2010) Chung et al. (2018), Maharani et al. (2019), Rahmani et al. (2010) and Yaghubnajad et al. (2012). Moreover, results of regime 2 were in line with Jennings et al. (2002), Cueto (2009), Etemadi et al. (2011) and Mehrani and Nasiri Forouzi (2017). The results of the current study support the idea that major investors are not a homogeneous group and there are differences in their characteristics that produce an asymmetric effect on liquidity. Thus, it cannot be determined whether the major investors are good or bad for the market, because their effects are different from one regime to another. It seems to be dependent on ownership percentages of the major investors and company features. The results also show that legal institutions and information transparency have to be improved in the financial market to increase the efficiencies of the major shareholders and produce an increasing effect on stocks liquidity. Furthermore, legal institutions are recommended to develop regulations with respect to supporting the investors and of course, prior to it, financial information transparency in the financial markets. The current study also had limitations that were: (1) determination of 5 percent as the criterion for being a major shareholder, a change in which could affect the results; (2) we don’t classified institutional shareholder can lead to false conclusion; (3) inherent limitations of the use of panel smooth transition regression model; (4). A variety of neural networks methods are not seen. This can lead to an unreasonable conclusion.
 
Keywords: Adverse Selection Hypothesis, Neural Network Models, Nonliner Approaches, Ownership Structure, Stock Liquidity and Transaction Cost Theory.

منابع
الف. فارسی
احمدپور، احمد و باغبان، احمد (1393). بررسی رابطه بین نقد شوندگی دارایی‌ها و نقد شوندگی سهام در بورس اوراق‌بهادار تهران. پژوهش‌های تجربی حسابداری، 4(14)، 61-77.
اعتمادی، حسین؛ رسائیان، امیر و کردتبار، حسین (1389). رابطه برخی از ابزارهای حاکمیت شرکتی و نقد شوندگی سهام. توسعه و سرمایه، 3(5)، 31-59.
باجلان، علی‌اکبر؛ کریمی‌پتانلار، سعید و جعفری‌صمیمی، احمد (1395). اثر تمرکززدایی مالی بر تورم در ایران: کاربردی از الگوی رگرسیون انتقال هموار تابلویی. فصلنامه مدلسازی اقتصادسنجی، 1(4)، 9-32.
خواجوی، شکراله و قدیریان‌آرانی، محمدحسین (1394). بررسی تأثیر کیفیت سود بر تجدید ارائه صورت‌های مالی. پیشرفت‌های حسابداری، 69(3)، 59-84.
رحمانی، علی؛ حسینی، سیدعلی و رضاپور، نرگس (1389). رابطه مالکیت نهادی و نقد شوندگی سهام در ایران. بررسی‌های حسابداری و حسابرسی، 17(61)، 39-54.
ستایش، محمد حسین و ابراهیمی میمند، مهدی (1394). رابطه بین نوع مالکیت نهادی و کیفیت افشا در بورس اوراق بهادار تهران. مطالعات تجربی حسابداری مالی، 12(48)، 53-76.
فخاری، حسین و فلاح‌محمدی، نرگس (1388). بررسی تأثیر افشای اطلاعات بر نقد شوندگی سهام شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران. تحقیقات حسابداری و حسابرسی، 1(5)، 148-163.
فلاح شمس، میرفیض. زارع، عظیم (1392). بررسی عوامل تأثیرگذار در بروز حباب قیمت در بورس اوراق بهادار تهران. فصلنامه بورس اوراق بهادار، 21(6)، 91-73.
قربانی، بهزاد؛ محمدی، علی و عسگری، زهرا (1393). کیفیت حاکمیت شرکتی و نقد شوندگی سهام. فصلنامه پژوهش‌های نوین در حسابداری، 2(3)،87-97.
کاشانی پور، محمد. مهرانی، ساسان. پاشانژاد، یوسف (1389). بررسی ارتباط برخی از مکانیزم‌های نظام راهبری شرکتی با نقد شوندگی بازار. مجله پژوهش‌های حسابدار مالی، 2(2)، 61-76.
محمدنژاد، مهدی (1397). نقد شوندگی سهام، حاکمیت شرکتی و اهرم مالی. پایان‌نامه کارشناسی ارشد، دانشگاه آزاد اسلامی سبزوار، دانشکده علوم انسانی.
مهرانی، کاوه و نصیری‌فروزی، علیرضا (1396). بررسی اثر سازوکارهای راهبری شرکتی و مدیریت سود بر نقد شوندگی سهام شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران. دانش حسابداری، 8(1)، 7-27.
‌نمازی، محمد و شکرالهی، ‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌احمد (1392). بررسی ‌تعامل ‌بین ‌جریان ‌نقدی ‌آزاد،‌ سیاست‌بدهی ‌و ‌ساختار‌ مالکیت ‌با ‌استفاده ‌از‌ سیستم ‌معادلات ‌همزمان؛‌ مطالعه ‌موردی ‌شرکت‌های‌ پذیرفته‌شده ‌در‌ بورس‌ اوراق ‌بهادار‌ تهران. پیشرفت‌های حسابداری، 65 (9)، 122-263.
نوروزی نصر، حسین؛ مرادزاده فرد، مهدی و شکری، اعظم (1398). تأثیر مالکیت شرکت‌های سرمایه‌گذاری بر نقد شوندگی سهام. پژوهش‌های حسابداری مالی و حسابرسی، 11(42)، 23-46.
ب. انگلیسی
Agarwal, P. (2007). Institutional ownership and stock liquidity. SSRN Electronic Journal, doi:10.2139/ssrn.1029395.
Ahmadpour, A. & Baghban, M. (2015). The Relation between asset liquidity and stock liquidity in Tehran Stock Exchange. Empirical Research in Accounting, 4(2), 61-77. (In Persian)
Alhazaimeh, A. Palaniappan, R. & Almsafir, M. (2014). The impact of corporate governance and ownership structure on voluntary disclosure in annual reports among listed Jordanian companies. Procedia-Social and Behavioral Sciences, 129, 341 – 348.
Ali, M. S. & Hashmi, S. H. (2018). Impact of institutional ownership on stock liquidity: Evidence from Karachi Stock Exchange, Pakistan. Global Business Review, 19(4), 939–951.
Attig, N., Fong, W. M., Gadhoum, Y. & Lang, L. H. P. (2006). Effects of large shareholding on information asymmetry and stock liquidity. Journal of Banking & Finance, 30(10), 2875-2892.
Bajelan, A., Karimi Potanlar, S. & Jafari Samimi, A. (2017). The effect of fiscal decentralization on inflation in Iran: An application of panel smooth transition regression model. Journal of Econometric Modelling, 2(1), 9-32. (In Persian)
Brown, S. & Hillegeist, S. (2007). How disclosure quality affects the level of information asymmetry. Review of Accounting Studies, 12(2-3), 443-477. https://doi.org/10.1007/s11142-007-9032-5
Chae, J. (2005). Trading volume, information asymmetry and timing information. Journal of Finance, 60(1), 413-442.
Chatterjee, D. (2016). Block shareholders and stock liquidity in the Indian Stock Market: Lack of trading or information asymmetry? SSRN Electronic Journal. doi:10.2139/ssrn.2808988.
Chung, H., John, E. & Jang-Chul, K. (2008). Corporate governance and liquidity. Journal of Financial and Quantitative Analysis, 45(2), 101-118.
Cornett, M., Millon, M., Alan J., Saunders, A. & Tehranian, H. (2007). The impact of institutional ownership on corporate operating performance. Journal of Banking & Finance, 87 (2), 357- 375.
Cueto, D. C. (2009). Market liquidity and ownership structure with weak protection for minority shareholders: Evidence from Brazil and Chile. Article in SSRN Electronic Journal, March 2009. Doi: 10.2139/ssrn. 1410197.
Cui, H. & Mak, Y. T. (2002). The relationship between managerial ownership and firm performance in high R&D firms. Journal of Corporate Finance, 8, 313-336.
Diamond, D. & Verrecchia, R. (1991). Disclosure, liquidity and the cost of equity capital. The Journal of Finance, 66, 1335-1360.
Easley, D. M. & O'Hara. (2004). Information and the cost of capital. Journal of Finance, 59, 1553- 1583.
Etemadi, H., Rasaiian, A. & Kordtabar, H. (2010). The relationship between some corporate governance instruments and bid-ask spread in Iran. Journal of Development and Capital, 3(1), 31-59. (In Persian)
Fakhari, H. & Fallah Mohammadi, N. (2009). Investigating the impact of information disclosure on liquidity of companies listed in Tehran Stock Exchange. Accounting and Auditing Research, 1(4), 148-163. (In Persian)
Fallah Shams, M. & Zare, A. (2013). Investigating factors affecting the occurrence of price bubble in Tehran stock exchange. Quarterly Journal of Securities Exchange, 21(6), 73-91. (In Persian)
Gaganis, C., Pasiouras, P. & Doumpos, M. (2007). Probabilistic neural networks for the identification of qualified audit opinions. Expert Systems with Applications, 32, 114–124.
Ghorbani, B., Mohammadi, A. & Asgari, Z. (2014). Corporate governance quality and stock liquidity. New Researches on Accounting, 2(3), 87-97. (In Persian)
Gonzalez, A. & Terasvirta, T. D. V. (2005). Panel smooth transition regression models. SEE/EFI Working Paper Series in Economics and Finance, No. 604.
Healy, P., A. Hutton, & K. Palepu. (1999). Stock price performance and intermediation changes surrounding sustained increases in disclosure. Contemporary Accounting Research, 7, 485-520.
Heflin, F. & Shaw, K. W. (2014). Blockholder ownership and market liquidity. Journal of Financial and Quantitative Analysis, 35(4), 621-633.
Hsieh, T. Y., Shiu, Y. M. & Chang, A. (2019). Does institutional ownership affect the relationship between accounting quality and cost of capital? A panel smooth transition regression approach. Asia Pacific Management Review. doi:10.1016/j.apmrv.2018.12.002.
Jacoby, G. & Zhen, X. (2010). Ownership dispersion and market liquidity. International Review of Financial Analysis, 19, 81-88.
Jennings, W., Schnatterly, K. & Seguin, P. J. (2002). Institutional ownership information and liquidity. Innovations in Investments and Corporate Finance, 7, 41-71.
Karmani, M. & Ajina, I. (2015). An investigation of the relation between corporate governance and liquidity: Empirical evidence from france. The Journal of Applied Business Research, 31(2), 631-646.
Kashanipoor, M., Mehrani, S. & Pashanejad, Y. (2010). A review of relation between corporate governance and market liquidity. Journal of Financial Accounting Research, 2(2), 61-76. (In Persian)
Khajavi, S. & Ghadirian Arani, M. (2016). Investigation of the impact of earnings quality on restatement of financial statements. Journal of Accounting Advances, 7(2), 59-84. (In Persian)
Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 53(6), 1315-1335.
Lafond, R. Lang, M. & Skaife, H. A. (2007). Earnings smoothing, governance and liquidity international evidence. Working Paper, University of North Carolina.
Le, L. (2019). Ownership Structure, Governance and Stock Liquidity in Vietnam, Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, The School of Economics and Finance QUT Business School Queensland University of Technology Brisbane, Australia.
Leuza, C., Nandab, D. & Wysocki, D. (2003). Earnings management and investor protection: an international comparison. Journal of Financial Economics, 69, 505–527.
Maharani, G., Hartoyo, I. S. & Sasongko, H. (2019). The effect of corporate governance on stock liquidity in banking sub-sector companies: evidence from Indonesian stock exchange. Russian Journal of Agricultural and Socio-Economic Sciences, 1(85), 15-23.
Matoussi, H., Karaa, A. & Maghraoui, R. (2004). Information asymmetry, disclosure level and securities liquidity in the BVMT. Finance India, 18, 547-557.
McConnell, J. J. & Servaes, H. (1990). Additional evidence on equity ownership and corporate value. Journal of Financial Economics 27, 595-612.
Mehrani, K., & Nasiri Farvazi, A. (2017). Impact of corporate governance and earning management on liquidity in companies in the Tehran Stock Exchange. Journal of Accounting Acknowledge, 8(1), 7-27. (In Persian)
Mendelson, H. & Tunca, T. I. (2004). Strategic trading, liquidity, and information acquisition. Review of Financial Studies, 17(2), 295-337.
Mohammanejad, M. (2018). Stock Market Liquidity, Corporate Governance and Financial Leverage. A Thesis Presented for the Master of Art Degree Accounting, Islamic Azad University of Sabzevar, faculty of social sciences. (In Persian)
Namazi, M., & Shokrollahi, A. (2013). investigating the interaction between free cash flow, debt policy, and ownership structure by using the simultaneous equation system. Journal of Accounting Advances, 65(9), 122-263. (In Persian)
Nouruzi Nasr, H., Moradzadefard, M. & Shokri, A. (2019). The impact of the ownership  of investment companies on stock market  liquidity. Financial Accounting and Auditing Research, 11(42), 23-46. (In Persian)
Prommin, P., Jumreornvong, S. & Jiraporn, P. (2014). The effect of corporate governance on stock liquidity: The case of Thailand. International Review of Economics & Finance, 32, 132–142.
Rahmani, A., Hosseini, S. & Rezapour, N. (2010). Institutional ownership and stock liquidity: Evidence from Iran. Accounting and Auditing Review, 17(3), 39-54. (In Persian)
Rubin, A. (2007). Ownership level, ownership concentration and liquidity. Journal of Financial Markets, 10(3), 219–248.
Saeedi, M. (2019). Reputation and adverse selection: Theory and evidence from eBay. The RAND Journal of Economics, 4, 866-919.
Sarin, A., Shastri, K. A. & Shastri, K. (2000). Ownership structure and stock market liquidity. Working paper, University of Pittsburgh.
Setayesh, M. & Ebrahimi Maimand, M. (2016). Relationship between institutional ownership types and disclosure quality in Tehran Stock Exchange. Empirical Studies in Financial Accounting, 12(48), 53-75. (In Persian)
Specht, A. (1991). A general regression Neural Network. IEEE Transaction on Neural Networks, 2(6), 56-64.
Tavana, M., Abtahi, A.-R., Di Caprio, D. & Poortarigh, M. (2018). An artificial neural network and bayesian network model for liquidity risk assessment in banking. Neurocomputing, 275, 2525–2554.
Wu, H. L. (2008). How do board–CEO relationships influence the performance of new product introduction? Moving from single to interdependent explanations. Journal of Corporate Governance: An International Review 16, 77- 89.
Yosra, G. & Sioud, O. B. (2011). Ultimate ownership structure and stock liquidity: Empirical evidence from Tunisia. Studies in Economics and Finance, 28(4), 282-300.