AICPA (2022). SASs Consideration of Fraud in a Financial Statement Audit. American Institute of Certified Public Accountants, https://www.aicpa-cima.com/resources/download/aicpa-statements-on-auditing-standards-currently-effective/
Amani, F.A., Fadlalla, A.M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems 24, 32.
Bakumenko, A., & Elragal, A. (2022). Detecting Anomalies in Financial Data Using Machine Learning Algorithms. Systems, 10(5), 130. https://doi.org/10.3390/systems10050130
Bao, Y., Ke, B., Li, B., Yu, Y.J. and Zhang, J. (2020), Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach.
Journal of Accounting Research, 58: 199-235.
https://doi.org/10.1111/1475-679X.12292
Bay, S., Kumaraswamy, K., Anderle, M.G., Kumar, R., Steier, D.M., Blvd, A., Jose, S. (2006). Large Scale Detection of Irregularities in Accounting Data. In: Data Mining. ICDM'06. Sixth International Conference on Data Mining (ICDM'06), Hong Kong, China, 2006, pp. 75-86, doi: 10.1109/ICDM.2006.93.
Beck, P. J., and I. Solomon. 1985. Sampling risks and audit consequences under alternative testing approaches. The Accounting Review 60 (4): 714–723. https://www.jstor.org/stable/247467
Bengio, Y., Yao, L., Alain, G., Vincent, P. (2013). Generalized denoising auto-encoders as generative models. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'13), Vol. 1. Curran Associates Inc., Red Hook, NY, USA, 899–907.
Berahmand, K., Daneshfar, F., Salehi, E. S., Li, Y., & Xu, Y. (2024). Autoencoders and their applications in machine learning: A survey.
Artificial Intelligence Review, 57(2), 28.
https://doi.org/10.1007/s10462-023-10662-6
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. In: Proceedings of the Acm Sigmod International Conference on Management of Data. pp. 1–12.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 1-58
Chen, A. Y., & Velikov, M. (2023). Zeroing In on the Expected Returns of Anomalies. Journal of Financial and Quantitative Analysis, 58(3), 968–1004. doi:10.1017/S0022109022000874
Debreceny, R.S., Gray, G.L. (2010). Data mining journal entries for fraud detection: An exploratory study. International Journal of Accounting Information Systems 11(3), 157 – 181
Deng, Q., & Mei, G. (2009). Combining self-organizing map and K-means clustering for detecting fraudulent financial statements. IEEE International Conference on Granular Computing, 126–131.
Drake Michael S. & Guest Nicholas M. & Twedt Brady J. (2014). The Media and Mispricing: The Role of the Business Press in the Pricing of Accounting Information, The Accounting Review, 89 (5): 1673–1701.
Domingos, S. L., Carvalho, R. N., Carvalho, R. S., & Ramos, G. N. (2016). Identifying IT Purchases Anomalies in the Brazilian Government Procurement System Using Deep Learning. 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 722–727.
https://doi.org/10.1109/ICMLA.2016.0129
Fang, Z., & Wang, S. (2024). Boosting financial market prediction accuracy with deep learning and big data.
Journal of Organizational and End User Computing, 36(1).
https://doi.org/10.4018/JOEUC.358454
Gomes, T. A., Carvalho, R. N., & Carvalho, R. S. (2017). Identifying Anomalies in Parliamentary Expenditures of Brazilian Chamber of Deputies with Deep Autoencoders, 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 2017, pp. 940-943, doi: 10.1109/ICMLA.2017.00-33.
Guo, K. H., Yu, X., & Wilkin, C. (2022). A picture is worth a thousand journal entries: Accounting graph topology for auditing and fraud detection. Journal of Information Systems, 36(2), 53–81. https://doi.org/10.2308/ISYS-2021-003
Hawkins, S., He, H., Williams, G., Baxter, R. (2002). Outlier Detection Using Replicator Neural Networks. In: International Conference on Data Warehousing and Knowledge Discovery Lecture Notes in Computer Science, vol 2454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46145-0_17
Hernandez Aros, L., Bustamante Molano, L. X., Gutierrez-Portela, F., Moreno Hernandez, J. J., & Rodríguez Barrero, M. S. (2024). Financial fraud detection through the application of machine learning techniques: A literature review. Humanities and Social Sciences Communications, 11(1), Article 1130. https://doi.org/10.1057/s41599-024-03606-0
Huang, F., No, W. G., Vasarhelyi, M. A., & Yan, Z. (2022). Audit data analytics, machine learning, and full population testing.
The Journal of Finance and Data Science, 8, 138–144.
https://doi.org/10.1016/j.jfds.2022.05.002
Islam, A.K., Corney, M., Mohay, G., Clark, A., Bracher, S., Raub, T., Flegel, U. (2010). Fraud detection in ERP systems using Scenario matching. In: Rannenberg, K., Varadharajan, V., Weber, C. (eds) Security and Privacy – Silver Linings in the Cloud. SEC 2010. IFIP Advances in Information and Communication Technology, vol 330. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-15257-3_11
Jans, M., Lybaert, N., & Vanhoof, K. (2007). Data mining for fraud detection: Toward an improvement on internal control systems? Proceedings of the 30th Annual Congress European Accounting Association (EAA2007).
Jans, M., Lybaert, N., & Vanhoof, K. (2010). Internal fraud risk reduction: Results of a data mining case study. International Journal of Accounting Information Systems, 11(1), 17–41.
Jans, M., Van DerWerf, J.M., Lybaert, N., Vanhoof, K. (2011). A business process mining application for internal transaction fraud mitigation. Expert Systems with Applications 38(10), 13351-13359
Khan, R., Corney, M., Clark, A., Mohay, G. (2010). Transaction Mining for Fraud Detection in ERP Systems. Industrial Engineering and Management Systems 9(2), pp. 141 – 156
Khan, R., Corney, M. (2009). A role mining inspired approach to representing user behavior in ERP systems. In: Proceedings of the 10th Asia Pacific Industrial Engineering and Management Systems Conference. pp. 2541 - 2552
Kogan, A., Alles, M. G., Vasarhelyi, M. A., & Wu, J. (2014). Design and Evaluation of a Continuous Data Level Auditing System. AUDITING: A Journal of Practice & Theory, 33(4), 221–245. https://doi.org/10.2308/ajpt-50844
Kuna, H. D., García-Martinez, R., & Villatoro, F. R. (2014). Outlier detection in audit logs for application systems. Information Systems, 44, 22–33. https://doi.org/10.1016/j.is.2014.03.001
Lokanan, M., Tran, V. and Vuong, N.H. (2019), Detecting anomalies in financial statements using machine learning algorithm: The case of Vietnamese listed firms, Asian Journal of Accounting Research, Vol. 4 No. 2, pp. 181-201.
Lu, F., Boritz, J. E., & Covvey, D. (2006). Adaptive fraud detection using Benford’s law. Canadian AI, 347–358. https://doi.org/10.1007/11766247_30.
McGlohon, M., Bay, S., Anderle, M.G.M., Steier, D.M., Faloutsos, C. (2009). SNARE: A Link Analytic System for Graph Labeling and Risk Detection. Kdd-09: 15Th Acm Sigkdd Conference on Knowledge Discovery and Data Mining.
Nonnenmacher, Jakob & Gómez Jorge Marx (2021). Unsupervised anomaly detection for internal auditing: Literature review and research agenda. The International Journal of Digital Accounting Research. Vol. 21, pp. 1-22.
Paula, E. L., Ladeira, M., Carvalho, R. N., & Marzagão, T. (2016). Deep Learning Anomaly Detection as Support Fraud Investigation in Brazilian Exports and Anti-Money Laundering. 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 954–960. https://doi.org/10.1109/ICMLA.2016.0172
Pincus, Morton& Rajgopal, Shivaram & Venkatachalam, Mohan (2007). The Accrual Anomaly: International Evidence. The Accounting Review 82 (1): 169–203.
Rumelhart, D.E., Hinton, G.E., Williams, R.J. (1986). Learning internal representation by error propagation. In: Parallel distributed processing: explorations in the microstructure of cognition, MIT Press, 1987, pp.318-362.
Schreyer, M., Sattarov, T., Borth, D., Dengel, A.R., & Reimer, B. (2017). Detection of Anomalies in Large Scale Accounting Data using Deep Autoencoder Networks. ArXiv, abs/1709.05254.
Schreyer, M., Sattarov, T., Schulze, C., Reimer, B., & Borth, D. (2019). Detection of Accounting Anomalies in the Latent Space using Adversarial Autoencoder Neural Networks.
https://arxiv.org/abs/1908.00734
Singleton, T., Singleton, A.J. (2010). Fraud auditing and forensic accounting (4th ed). John Wiley & Sons.
Teitlebaum, A. D., and C. F. Robinson. 1975. The real risks in audit sampling. Journal of Accounting Research 13: 70–91. https:// doi.org/10.2307/2490480
Teoh S.H. & Welch I.& Wong T.J. (1998). Earnings management and the underperformance of seasoned equity offerings Journal of Financial Economics, 50, pp. 63-99
Thiprungsri, S., & Vasarhelyi, M. A. (2011). Cluster analysis for anomaly detection in accounting data: An audit approach.
International Journal of Digital Accounting Research,
11, 69-84.
https://doi.org/10.4192/1577-8517-v11_4
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. (2008). Extracting and composing robust features with denoising autoencoders. International Conference on Machine Learning.
Wei, D., Cho, S., Vasarhelyi, M. A., & Te-Wierik, L. (2024). Outlier detection in auditing: Integrating unsupervised learning within a multilevel framework for general ledger analysis.
Journal of Information Systems, 38(2), 123–142.
https://doi.org/10.2308/ISYS-2022-026
Wells, J.T. (2017). Corporate Fraud Handbook: Prevention and Detection. John Wiley & Sons.
Williams, G. & Baxter, R. & He H & Hawkins S and Gu L (2002) A comparative study of RNN for outlier detection in data mining. IEEE International Conference on Data Mining, 1–16.
Yan, Xuemin (Sterling); Zheng, Lingling (2017). Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach, The Review of Financial Studies, 30(4), 1382–1423.